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Abstract—Downsampling and the computation of the ban-
dlimited interpolation of discrete-time signals are two important
concepts in signal processing. In this paper we analyze the
downsampling operation regarding its impact on the existence
and computability of the bounded bandlimited interpolation. We
assume that the discrete-time signal is obtained by downsampling
the samples of a bounded bandlimited signal that vanishes at
infinity, and we study two problems. First, we investigate the
existence of the bounded bandlimited interpolation for such
discrete-time signals from a signal theoretic perspective and
show that there exist signals for which the bounded bandlimited
interpolation does not exist. Second, we analyze the algorithmic
generation of the bounded bandlimited interpolation, using the
concept of Turing computability. Turing computability models
what is theoretically implementable on a digital computer. In-
terestingly, it turns out that even if the bounded bandlimited
interpolation exists analytically, it is not always computable,
which implies that there exists no algorithm on a digital computer
that can always compute it. Computability is important in order
that the approximation error be controlled. If a signal is not
computable, we cannot ascertain whether the computed signal is
sufficiently close to the true signal, i.e., we cannot verify every
approximation accuracy.

Index Terms—bandlimited signal, downsampling, bandlimited
interpolation, Turing computability

I. INTRODUCTION

SAMPLING of analog signals is one of the basic operations
in signal processing and is of fundamental importance.

The Shannon sampling theorem provides the theoretical foun-
dation for the sampling of bandlimited signals with finite
energy and their error-free recovery from the samples [2].
Since Shannon’s paper from 1949, numerous publications have
extended this result [3]–[8] in different directions. Among
them are sampling theorems for other and larger signal spaces
and for new basis representations [9]–[12]. In addition to
signal processing, the sampling theorem has important applica-
tions in other disciplines, such as physics [13]. For a historical
treatment, see, for example, [14]–[17].
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Fig. 1. Processing of analog signals in the digital domain.

Downsampling or decimation, which is the process of re-
ducing the sampling rate of a discrete-time signal by removing
samples, is a central operation in digital signal processing that
is used in many applications, for example in filter banks [18],
[19], image processing [20]–[22], and communication systems
[23], [24]. In this work we consider only one-dimensional
downsampling. If we downsample a signal {xk}k∈Z by a
factor of two, we only keep the samples {x2k}k∈Z, and the
downsampled signal is given by {xdown

k }k∈Z = {x2k}k∈Z.
Often, the discrete-time signal is obtained by sampling a
bandlimited continuous-time signal. Since we do not consider
quantization in this paper, we also call a discrete-time signal
a digital signal.

Digitization, i.e., the transition from the continuous-time
domain to the discrete-time domain is the basis of today’s
digital transformation, where the key idea is to perform all
signal processing operations in the digital domain. The original
idea, which is illustrated in Fig. 1, is based on the Shannon
sampling theorem. Instead of processing an analog signal f in
the analog domain using an analog system TA to produce the
desired output signal g = TAf , the signal f is first converted
into a digital signal x which is then processed by a digital
system TD, resulting in a digital output signal y = TDx.
Finally, the digital signal y is converted into an analog signal
g̃ by means of a reconstruction process. If g̃ = g then the
analog signal processing task has been successfully transferred
into a digital signal processing task, according to the above
procedure.

Nowadays, digital signal processing is an independent disci-
pline in signal processing, and often, the signals that are being
processed are already created in the digital domain and do not
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Fig. 2. Connection of the analog and the digital domain.

stem from analog signals. However, in many situations such
as in digital communications, at the end of the processing the
discrete-time signals are still transformed into the continuous-
time domain, and this transformation is done by computing the
bandlimited interpolation of the discrete-time signal. Hence,
the questions of whether the bandlimited interpolation exists
and whether it can be generated algorithmically are of high
practical relevance.

For bandlimited signals f with finite energy and no fre-
quencies larger than 2π, we know from Shannon’s sampling
theorem that we can reconstruct the continuous-time signal
f from its samples {f(k/2)}k∈Z. Thus, by sampling and
interpolation with the Shannon sampling series, we have a
correspondence between discrete-time and continuous-time
signals, as illustrated in Fig. 2. In this paper we study the
impact of downsampling on this correspondence. Without loss
of generality, we use bandlimited signals having a bandwidth
of π or 2π. Then sampling at the Nyquist rate corresponds
to sampling on the grids {k}k∈Z and {k/2}k∈Z, respectively.
However, this is no restriction, other bandwidths can be
obtained by a simple scaling of the signals.

Assume that we have a bounded bandlimited signal f with
bandwidth 2π that we sample at the Nyquist rate. Then the
discrete-time signal is given by {xk}k∈Z = {f(k/2)}k∈Z. In
the next step we downsample this sequence by a factor of
two, which gives us the downsampled signal {xdown

k }k∈Z =
{f(k)}k∈Z. Now the question is whether for this downsampled
discrete-time signal {xdown

k }k∈Z there exist any problems in
finding a bounded continuous-time signal fπ with bandwidth
π that interpolates the downsampled signal {xdown

k }k∈Z, i.e.,
satisfies fπ(k) = xdown

k , k ∈ Z. Such a signal fπ is known as
the bounded bandlimited interpolation and has many applica-
tions, e.g., in communications and image processing [25]–[28].

We study two aspects of this question. First, we look at
this problem from a signal theoretic perspective and ask if fπ
exists as a mathematical object. This is clearly a necessary
condition for any practical application. In general, downsam-
pling as a signal processing operation is not given much
attention in theoretical analyses, because it is assumed that this
procedure does not create any fundamental problems. In many
signal processing books, the bandlimited interpolation, i.e., the
continuous-time signal that corresponds to the downsampled
sequence, is formally obtained by using a convolution theorem
and distribution theory. See, for example, [25, p. 52, p. 162],
[26, p. 144]. However, for signal spaces other than the space
of bandlimited signals with finite energy, it is a priori not clear
whether those manipulations and expressions are well-defined,
even when they are treated in the sense of distributions [29].

Second, we analyze a more subtle problem that has not
gotten much attention in the signal processing community so
far, which is, nevertheless, equally important for a practical
implementation: the question of computability. Even if fπ
exists as a signal in a mathematical sense, we need to be
able to compute fπ from the discrete-time signal {xdown

k }k∈Z.
That is, we need an algorithm that can approximate fπ from
{xdown

k }k∈Z in a finite number of steps and with assured
precision. The theoretical concept that we employ to study this
second question is Turing computability. Turing computability
is a standard model for computing that idealizes our digital
computers. A Turing machine has no limitations in terms of
memory or computing time, and hence provides a theoretical
model that describes the fundamental limits of any practically
realizable digital computer.

The answers to both questions clearly depend on the
properties of the involved signals. For example, if f is a
computable 2π-bandlimited signal with finite energy, then the
discrete-time signal {xk}k∈Z = f(k/2) and the downsampled
signal {xdown

k }k∈Z = f(k) both have finite energy and are
computable. The bounded bandlimited interpolation fπ exists
and can be obtained by means of the Shannon sampling series

fπ(t) =

∞∑
k=−∞

f(k)
sin(π(t− k))

π(t− k)
. (1)

In this case fπ is also computable, i.e., we can find an
algorithm that for any given precision goal, approximates fπ .
However, for other signal spaces, this is not necessarily true.
In this paper we consider the space of bounded bandlimited
signals that vanish at infinity.

After introducing some notation in Section II, we introduce
the concept of computability in Section III and give some
facts about downsampling and interpolation in Section IV. In
Section V we analyze the first question, i.e., the existence of
the bounded bandlimited interpolation. The second question,
i.e., the computability of the bounded bandlimited interpola-
tion, is treated in Section VI, followed by a discussion of
the results in Section VII. The proofs of the theorems are
given in Section VIII. In Section IX we discuss the size
of certain sets of signals with problematic behavior, and in
Section X we construct a non-computable number and discuss
the approximation in terms of computable Cauchy sequences.
The paper is concluded with a discussion in Section XI.

II. NOTATION

By c0 we denote the set of all sequences that vanish at
infinity, and by C∞0 [0, 1], the space of all functions that have
continuous derivatives of all orders and are zero outside [0, 1].
For Ω ⊂ R, let Lp(Ω), 1 ≤ p < ∞, be the space of
all measurable pth-power Lebesgue integrable functions on
Ω, with the usual norm ‖ · ‖p, and L∞(Ω) the space of all
functions for which the essential supremum norm ‖ · ‖∞ is
finite. The Bernstein space Bpσ , σ > 0, 1 ≤ p ≤ ∞, consists of
all functions of exponential type at most σ, whose restriction
to the real line is in Lp(R) [8, p. 49]. The norm for Bpσ is
given by the Lp-norm on the real line. A function in Bpσ is
called bandlimited to σ. B∞σ,0 denotes the space of all functions
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in B∞σ that vanish at infinity. By PWp
σ , 1 ≤ p ≤ ∞, we

denote the Paley–Wiener space of functions f with a repre-
sentation f(z) = 1/(2π)

∫ σ
−σ g(ω) eizω dω, z ∈ C, for some

g ∈ Lp[−σ, σ]. If f ∈ PWp
σ , then g(ω) = f̂(ω). The norm

for PWp
σ is given by ‖f‖PWp

σ
= (1/(2π)

∫ σ
−σ|f̂(ω)|p dω)1/p.

PW2
σ is the frequently used space of bandlimited functions

with bandwidth σ and finite energy.
Distributions are continuous linear functionals on a space of

test functions. D is the space of all test functions φ : R→ C
that have continuous derivatives of all orders and are zero
outside some finite interval. D′ denotes the dual space of D,
i.e., the space of all distributions that can be defined on D.
For locally integrable functions g we can define the linear
functional

φ 7→
∫ ∞
−∞

g(t)φ(t) dt (2)

on the space D. It can be proven that this functional is
continuous and thus defines a distribution [30]. Distributions
of the type (2) are called regular distributions. A sequence
of distributions {fk}k∈N in D′ is said to converge in D′,
if for every φ ∈ D the sequence of numbers {fkφ}k∈N
converges. Thus, a sequence of regular distributions, which is
induced by a sequence of functions {gk}k∈N according to (2),
converges in D′, if for every φ ∈ D the sequence of numbers
{
∫∞
−∞ gk(t)φ(t) dt}k∈N converges.

III. COMPUTABILITY

The theory of computability is a well-established field in
computer sciences [31]–[35]. However, since computability is
not widely known in the signal processing community, we
describe some of the key concepts in this section. For a more
detailed treatment of the topic, see for example [33]–[36].

In order to study the question of computability, we employ
the concept of Turing computability. A Turing machine is an
abstract device that manipulates symbols on a strip of tape
according to certain rules [31]–[33], [35]. Although the con-
cept is very simple, a Turing machine is capable of simulating
any given algorithm. Turing machines have no limitations
in terms of memory or computing time, and hence provide
a theoretical model that describes the fundamental limits of
any practically realizable digital computer. Moreover, Turing
machines are equivalent to other concepts of computability,
such as those defined by general recursive functions, Minksy
register machines, and λ-calculus.

It is important to distinguish Turing computability from
complexity theory, another major topic in computer science.
Complexity theory, which is also relevant for signal process-
ing, deals with the question of how efficiently a problem can
be solved, and analyzes how the computation time of a given
algorithm scales with the size of the input data. Thus, the
goal of complexity theory is different from the goal in Turing
computability, where the fundamental limits of computability
are explored without considering complexity issues. It is clear
that the study of the complexity of a problem requires that the
problem be algorithmically solvable.

Further, complexity theory operates in a discrete and finite
setting. However, the modeling of many real world problems

involves continuous infinite signals, e.g., bandlimited signals
that have an infinite duration. Thus, in order to apply com-
plexity theory on such “continuous problems”, it is necessary
that the continuous signals be approximated by discrete and
finite signals in a controlled way.

Questions of complexity have been studied in signal pro-
cessing for a long time. As for computability, this is not the
case. It seems to be a folklore result in signal processing
that an increase in computational power automatically leads
to a better approximation of the continuous problem, where
we implicitly control the approximation error between the
computed signal and the true solution. That this is not the
case for downsampling and the bandlimited interpolation will
be the result of Section VI.

Alan Turing introduced the concept of a computable real
number in [31], [32]. A sequence of rational numbers {rn}n∈N
is called a computable sequence if there exist recursive func-
tions a, b, s from N to N such that b(n) 6= 0 for all n ∈ N
and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N.

A recursive function is a function mapping natural numbers
into natural numbers, which is built of simple computable
functions and recursions [37]. Recursive functions are com-
putable by a Turing machine. A real number x is said to be
computable if there exists a computable sequence of rational
numbers {rn}n∈N and a recursive function ξ : N → N such
that for all N ∈ N we have |x− rn| ≤ 2−N for all n ≥ ξ(N).
By Rc we denote the set of computable real numbers and by
Cc = Rc + iRc the set of computable complex numbers. Rc
is a field, i.e., finite sums, differences, products, and quotients
of computable numbers are computable. Note that commonly-
used constants like e and π are computable. A non-computable
real number was, for example, constructed in [38].

There are several—not equivalent—definitions of com-
putable functions, most notably, Turing computable functions,
Markov computable functions, and Banach–Mazur computable
functions [36]. An example of a non-computable function was
given in [39]. A function that is computable with respect to
any of the above definitions has the property that it maps
computable numbers into computable numbers. This property
is therefore a necessary condition for computability. Usual
functions like sin, sinc, log, and exp are computable, and
finite sums of computable functions are computable [34].

We call a function f elementary computable if there exists
a natural number N and a sequence of computable numbers
{αk}Nk=−N , such that

f(t) =
N∑

k=−N
αk

sin(π(t− k))

π(t− k)
. (3)

Note that every elementary computable function f is a finite
sum of computable functions and hence computable. As a
consequence, for every t ∈ Rc the number f(t) is computable.
Further, the sum of finitely many elementary computable func-
tions is computable, as well as the product of an elementary
computable function with a computable number λ ∈ Cc.
Hence, the set of elementary computable functions is closed
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with respect to the operations addition and multiplication with
a scalar. Further, as we will show next, for every elementary
computable function f , the norm ‖f‖B∞

π,0
is computable. Let

f be an elementary computable function, having the shape (3).
We have

‖f‖B∞
π,0
≤ max
|k|≤N

|αk| ·max
t∈R

N∑
k=−N

∣∣∣∣ sin(π(t− k))

π(t− k)

∣∣∣∣
≤ max
|k|≤N

|αk|
(

5 +
4

π
+

4

π
log(N))

)
, (4)

where the second inequality follows from a calculation that is
similar to (20). Let M > N+1. A basic but lengthy calculation
shows that

|f(t)| ≤ 1

π
max
|k|≤N

|αk| log

(
M +N

M −N − 1

)
for all |t| ≥M . Let M1 be the smallest natural number such
that M1 > N + 1 and

log

(
M +N

M −N − 1

)
<
π

2
.

Then we have
|f(t)| < 1

2
max
|k|≤N

|αk|

for all |t| ≥M1. Since

‖f‖B∞
π,0
≥ max
|k|≤N

|αk|,

we see that f attains its maximum in the interval [−M1,M1].
Further, according to Bernstein’s inequality, we have

‖f ′‖B∞
π,0
≤ π‖f‖B∞

π,0

≤ max
|k|≤N

|αk| (5π + 4 + 4 log(N))) ,

where we used (4) in the second inequality. Thus, it follows
that

|f(t1)− f(t2)| ≤ |t1 − t2|‖f ′‖B∞
π,0

≤ |t1 − t2| max
|k|≤N

|αk| (5π + 4 + 4 log(N))

for all t1, t2 ∈ [−M1,M1]. This inequality and the fact that
f(t) is computable for all t ∈ [−M1,M1] ∩ Rc show that

‖f‖B∞
π,0

= max
t∈[−M1,M1]

|f(t)|

is computable.
A function in f ∈ B∞π,0 is computable in B∞π,0 if there exist

a computable sequence of elementary computable functions
{fn}n∈N and a recursive function ξ : N → N, such that for
all N ∈ N we have ‖f − fn‖B∞

π,0
≤ 2−N for all n ≥ ξ(N).

By CB∞π,0 we denote the set of all functions in B∞π,0 that are
computable in B∞π,0. Note that CB∞π,0 has a linear structure.
The set CB∞π,0 is the “effective closure” in B∞π,0 of the set of
elementary computable functions. Hence, we can approximate
any function f ∈ CB∞π,0 by an elementary computable function
where we have an “effective” control of the approximation
error.

In other words, for every prescribed approximation error
ε > 0 we can compute an index n0 = ξ(d− log2(ε)e) such
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Error bar
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Fig. 3. For a computable signal we can always determine an error bar and
then can be sure that the true value lies within the specified error range.

that the approximation error ‖f − fn‖Bpπ is less than or equal
to ε for all n ≥ n0. This behavior is illustrated in Fig. 3.

Due to the inequality∣∣∣‖f‖B∞
π,0
− ‖fn‖B∞

π,0

∣∣∣ ≤ ‖f − fn‖B∞
π,0
,

it follows immediately that the norm ‖f‖B∞
π,0

, i.e., the max-
imum of f , is computable for all f ∈ CB∞π,0. See also [34,
pp. 40].

In order that the above definition of a computable function
in B∞π,0 makes sense, it is necessary that each f ∈ B∞π,0 can
be approximated in a classical sense by a linear combination
of shifted sinc-functions. This is assured by the next fact, the
proof of which will be given in Appendix A.

Fact 1. Let f ∈ B∞π,0. For every ε > 0 there exist an N ∈ N
and numbers {ck}Nk=−N such that∥∥∥∥∥f −

N∑
k=−N

ck
sin(π(t− k))

π(t− k)

∥∥∥∥∥
B∞
π,0

< ε.

A set A ⊂ N is called recursively enumerable if A = ∅ or
A is the range of a recursive function. A set A ⊂ N is called
recursive if both A and N \A are recursively enumerable.

IV. DOWNSAMPLING FOR BANDLIMITED SIGNALS

Let f ∈ PW2
2π be a bandlimited signal with bandwidth

2π and finite energy. Then f is completely determined by
its samples {f(k/2)}k∈Z. Removing every second sample,
i.e., keeping only the samples {xdown

k }k∈Z = {f(k)}k∈Z,
corresponds to a downsampling factor of two. The continuous-
time signal fπ that corresponds to the downsampled discrete-
time signal {xdown

k }k∈Z is given by

fπ(t) =
∞∑

k=−∞
f(k)

sin(π(t− k))

π(t− k)
, t ∈ R. (5)

The series in (5) converges in the L2-norm, as well as
uniformly on the real axis, and we have fπ ∈ PW2

π ⊂ PW
2
2π .

Hence, for the signal space PW2
2π , downsampling and ban-

dlimited interpolation of the downsampled signal are well-
defined.
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For N ∈ N, let

(SNf)(t) =
N∑

k=−N
f(k)

sin(π(t− k))

π(t− k)
, t ∈ R

denote the finite Shannon sampling series. For every sig-
nal f that is computable in PW2

2π , SNf is computable
in PW2

2π , because SNf is the finite sum of computable
functions. Further, for fixed t ∈ Rc, the computable sequence
{(SNf)(t)}N∈N of computable numbers converges effectively
to f(t), because

|f(t)− (SNf)(t)| ≤ ‖f − SNf‖PW2
2π
.

Hence for f ∈ PW2
2π and each t ∈ Rc, the bounded

bandlimited interpolation fπ(t) is computable.
However, downsampling is also often used for other, larger

signal spaces, like B∞2π,0 or B∞2π , both of which are important
for example in communications. In the present paper we study
downsampling for the space B∞2π,0. A signal f ∈ B∞2π,0 is
uniquely determined by its samples f(k/2), k ∈ Z, and for
all T > 0 we have

lim
N→∞

max
[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N
f

(
k

2

)
sin(2π(t− k

2 ))

2π(t− k
2 )

∣∣∣∣∣ = 0,

i.e., the Shannon sampling series converges locally uniformly
to the signal f [40]. Further, we have {f(k/2)}k∈Z ∈ c0.
Clearly, the downsampled discrete-time signal also satisfies
{f(k)}k∈Z ∈ c0. However, the question is whether the
bounded bandlimited interpolation fπ ∈ B∞π exists, and if
yes, if it can be computed.

It is well-known that there exist sequences that do not
possess a bounded bandlimited interpolation. For example, for
the sequence

xk =

{
0, k ≤ 0,
(−1)k

log(1+k) , k ≥ 1,

there exists no signal fπ ∈ B∞π with fπ(k) = xk for all k ∈ Z
[41]. Note that the situation that is analyzed in the present
paper is more complicated. Here, the sequence is not freely
chosen, but obtained by downsampling a bounded bandlimited
signal. In fact, the signal that we will construct later is a
bandpass signal with arbitrarily small effective bandwidth.

V. EXISTENCE OF THE BOUNDED BANDLIMITED
INTERPOLATION

In the following two theorems the signal

γδ(t) = eiπt gδ(t), t ∈ R, (6)

with

gδ(t) =
1

π

∫ δπ

0

sin(ωt)

ω log(πω )
dω, t ∈ R,

will play a central role. δ ∈ (0, 1) is a parameter that specifies
the bandwidth of the signal. The signal g1/2 is visualized in
Fig. 4.

Our first theorem shows that the bounded bandlimited
interpolation of the downsampled signal does not always exist.

−20 −10 0 10 20

−0.4

−0.2

0

0.2

0.4

t

g1/2(t)

Fig. 4. Plot of the signal gδ(t) for δ = 1/2.

Theorem 1. Let δ ∈ (0, 1), and let γδ ∈ B∞(1+δ)π,0 be the
signal defined in (6). Then there exists no fπ ∈ B∞π such
that fπ(k) = γδ(k) for all k ∈ Z. That is, there exists
no bounded bandlimited interpolation for the downsampled
sequence {γδ(k)}k∈Z.

We postpone all proofs until Section VIII.
As the next theorem shows, for the downsampled sequence
{γδ(k)}k∈Z, the Shannon sampling series diverges for all t ∈
R \Z. Moreover, the divergence even holds in a distributional
setting.

Theorem 2. Let δ ∈ (0, 1), and let γδ ∈ B∞(1+δ)π,0 be the
signal defined in (6). Then, for all t ∈ R \ Z, we have

lim
N→∞

∣∣∣∣∣
N∑

k=−N
γδ(k)

sin(π(t− k))

π(t− k)

∣∣∣∣∣ =∞.

Further, there exists a φ1 ∈ C∞0 [0, 1] such that

lim
N→∞

∣∣∣∣∣
∫ ∞
−∞

N∑
k=−N

γδ(k)
sin(π(t− k))

π(t− k)
φ1(t) dt

∣∣∣∣∣ =∞,

i.e., the series diverges in D′.

In order to illustrate the divergence behavior observed in
Theorem 2, the partial sums of the Shannon sampling series

(SNγδ)(t) =
N∑

k=−N
γδ(k)

sin(π(t− k))

π(t− k)

are plotted in Fig. 5 for δ = 1/2 and N = 5, 40, 320. While the
values of the partial sums (SNγδ)(t) are fixed on the integer
grid Z, the increase for t ∈ R \ Z is clearly visible.

Remark 1. The signal γδ has a remarkably simple structure. It
is not constructed as an infinite series, but defined as a simple
integral expression.

Remark 2. γδ is a bandpass signal that is created by modulat-
ing the lowpass signal gδ . Since the spectrum of the lowpass
signal gδ is concentrated on [−δπ, δπ], gδ is completely
determined by its samples {gδ(k/δ)}k∈Z. Further, the effective
bandwidth of the bandpass signal γδ is 2δπ.
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Fig. 5. Plot of the sums (SNγδ)(t) for δ = 1/2 and N = 5, 40, 320.
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Fig. 6. Illustration of the non-computability of the bandlimited interpolation.
In the left panel we see the sequence for which we seek the bandlimited
interpolation. In the right panel we see that the values of the bandlimited
interpolation are computable on the integer grid Z (the true value lies within
the error bar), but not in between (indicated by the gray rectangles).

VI. COMPUTABILITY OF THE BOUNDED BANDLIMITED
INTERPOLATION

In this section we consider the same scenario as before, but
now from a computability perspective.

In practical applications, a digital computer is often used
to perform the signal processing operations. With respect to
the correspondence between discrete-time and continuous-time
signals that was discussed in the introduction, the question
arises if this correspondence still holds from a computational
point of view.

If we sample a computable continuous-time signal f ∈
CB∞2π,0, then the sequence of sampling points {f(k/2)}k∈Z
is a computable sequence in c0. The same is true for the
downsampled sequence {xdown

k }k∈Z = {f(k)}k∈Z. Hence, this
direction can be performed without problems. However, the
opposite direction, i.e., computing the bounded bandlimited
interpolation fπ can be problematic.

In Theorem 1 we have seen that there exist signals, such
that for the downsampled discrete-time signal there exists no
bounded bandlimited interpolation. Clearly, if the bounded
bandlimited interpolation does not exist, we cannot compute
it. Hence, in the following we consider only those signals
for which the bounded bandlimited interpolation exists. But
even if the bounded bandlimited interpolation exists, it is
not guaranteed that it is computable. The following theorem
is our main result about the computability of the bounded
bandlimited interpolation.

Theorem 3. There exists a computable signal f ∈ CB∞2π,0
such that the bandlimited interpolation fπ exists in B∞π,0 and
we have fπ(t) 6∈ Cc for all t ∈ Rc \ Z.

The signal fπ in Theorem 3 is not computable because it
does not even satisfy the minimal requirement that computable
numbers are mapped into computable numbers. Only for k ∈ Z
do we have this property, because fπ(k) = f(k), k ∈ Z.
Hence, our result shows that fπ is neither Turing, nor Markov,
nor Banach–Mazur computable.

Remark 3. Note that Theorem 3 is not only an abstract exis-
tence result. In fact, the computable signal f from Theorem 3
is constructed in the proof of the theorem, and given there in
eq. (22).

Remark 4. The full proof of Theorem 3 will be given in
Section VIII. Nevertheless, we will next give a preview of
the construction of the signal f . f is constructed such that f
is computable in B∞2π,0, i.e., can be effectively approximated
by a finite sampling series. It follows that the sequence of
samples {f(k)}k∈Z is computable in c0, i.e., {f(k)}k∈Z can
be approximated arbitrarily well with a discrete-time signal
that only has finitely many non-zero values. This signal is
given by the even coefficients of the finite sampling series.
However, although the samples {f(k)}k∈Z are computable,
their oscillation is too strong, and therefore the bandlimited
interpolation fπ(t) is not computable for any t ∈ Rc.

From an approximation point of view, we can interpret
the non-computability of fπ in B∞π,0 as follows. Since fπ is
not computable in B∞π,0, there exists no computable sequence
of elementary computable functions {fn}n∈N that effectively
approximates fπ . This means we cannot effectively control
the approximation error ‖fπ − fn‖B∞

π,0
. The result in The-

orem 3 is even stronger. Since fπ(t) is not computable for
all t ∈ Rc \ Z, not only the approximation with elementary
computable functions that employ the sinc function has to
fail, but in fact the approximation with any other sequence
of computable functions also. This can be seen as follows.
Assume that there exists a computable sequence {fn}n∈N of
computable functions, which are not necessarily elementary
computable functions, that converges effectively to fπ in B∞π,0.
Since

|fπ(t)− fn(t)| ≤ ‖fπ − fn‖B∞
π,0
,

it follows that, for all t ∈ Rc, the computable sequence
{fn(t)}k∈Z of computable numbers converges effectively to
fπ(t). Hence, we have fπ(t) ∈ Cc for all t ∈ Rc, which is a
contradiction to Theorem 3. The preceding calculation shows
that non-computability of fπ(t) for t ∈ Rc \ Z immediately
excludes the possibility that fπ can be effectively approxi-
mated by any computable sequence of computable functions in
B∞π,0, even if we allow more general functions than elementary
computable functions for the approximation.

Remark 5. From Fact 1 we know that fπ can be approximated
by a sequence of finite Shannon sampling series. For every
M ∈ N there exist an N(M) and numbers {ck(M)}N(M)

k=−N(M)
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such that∥∥∥∥∥∥fπ −
N(M)∑

k=−N(M)

ck(M)
sin(π( · − k))

π( · − k)

∥∥∥∥∥∥
B∞
π,0

<
1

2M
. (7)

However, the pair of functions N(M) and {ck(M)}N(M)
k=−N(M)

is not Turing computable. Thus, these parameters in (7) cannot
be determined algorithmically.

A direct consequence of Theorem 3 is the following corol-
lary.

Corollary 1. There exists a computable sequence {xk}k∈Z ∈
c0 such that the bandlimited interpolation fπ exists in B∞π,0
and we have fπ(t) 6∈ Cc for all t ∈ Rc \ Z.

Corollary 1 is illustrated in Fig. 6, where it is symbolically
shown that fπ(t) cannot be approximated for t ∈ Rc \Z with
an effective control of the approximation error.

VII. DISCUSSION OF THE RESULTS

Before we continue with giving the proofs in Section VIII,
we resume the discussion started in the introduction about the
relevance of the results for signal processing.

In signal processing we face the situation that we have to
deal with continuous-time and discrete-time signals. While
many real world processes are described mathematically by
continuous models, e.g., partial differential equations such as
Maxwell’s equations or the convection-diffusion equation, and
thus involve continuous-time signals, most of the actual signal
processing is performed in the digital domain, using digital
computers that process discrete-time signals.

A usual approach is to approximate the continuous problem
by a discrete problem, which is then solved on a digital
computer. But only if we can control the approximation error,
does the discrete problem give us useful information about
the original continuous problem. Whenever we use a digital
computer to solve a continuous problem, we have to ensure
that the result is meaningful, which requires controlling the
approximation error, as illustrated in Fig. 7.

In his landmark paper “On computable numbers, with an
application to the Entscheidungsproblem” from 1936, Alan
Turing studied computable real numbers and how they can be
approximated by a Turing machine [31]. This is exactly the
situation that we discussed above. The real number, which is a
continuous quantity, is approximated by a sequence of discrete
objects, where the approximation error can be controlled.
With this paper, Turing laid the foundation of computer

science, employing a model of computation that is close to
the hardware that is still used in digital signal processing.

In signal processing, sampling is used to convert a ban-
dlimited continuous-time signal with infinite duration into a
sequence of numbers, and bandlimited interpolation to convert
a sequence of numbers back into a bandlimited signal [4]–[6],
[8], [42]. The Shannon’s sampling theorem is the theoretical
basis for the coupling of the analog and the discrete domain
[2], [13], [14]. The conversion of a continuous-time signal
into a discrete-time signal can always be easily done, i.e.,
any computable bandlimited signals leads to a computable
discrete-time signal after sampling. However, the conversion
of a computable discrete-time signal into a computable ban-
dlimited signal can be problematic.

Even if the bandlimited interpolation of a discrete-time
signal exists mathematically, it might not be possible to
compute it algorithmically on a digital computer, because the
approximation error cannot be effectively controlled. This is
the statement of Theorem 3 and Corollary 1, and is illustrated
in Fig. 6.

Our results show that there can be problems in the compu-
tation of the bandlimited interpolation on a digital hardware
platform. So far, the usual theoretical analyses in signal
processing have not treated this kind of problem when de-
signing algorithms. As already discussed, it has implicitly
been assumed that digital computers can approximate any
continuous problem and that the approximation error decreases
with increasing computational power. This is not always the
case. Our results show that it is not sufficient to develop
an algorithm for the approximation of a continuous problem,
rather it is necessary to analyze the approximation error and
to specify a stopping criterion that can guarantee any desired
approximation error. This is a completely new design problem
that has not been treated so far.

Theoretically, it is possible to implement the Shannon
sampling series in analog hardware. However, it is completely
unclear what such an analog implementation would look like.

In [43] it has been shown, using the Fourier transform
as an example, that analog implementations can potentially
have advantages compared to digital implementations. More
specifically, in [43] it was proved that there exist computable
bandlimited signals with finite energy, the Fourier transform
of which is smooth but not computable. Turing machines
provide a model for the perfect digital machine. Yet, the
Fourier transform of such signals cannot be computed on a
Turing machine. On the other hand, there is the theory of
Fourier optics, where, using an idealized analog machine,
it is theoretically possible to compute the Fourier transform
[44], [45]. This shows that there is a fundamental difference
between the two computing models, given by digital Turing
machines and analog Fourier optics. Certainly, the theoretical
possibility of implementing the Fourier transform by using
Fourier optics makes no statement about how well such an
implementation would be realized under real conditions. The
answer to this question also depends on the actual state of the
hardware development. Further studies in this direction are
necessary.
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VIII. PROOFS

In this section we give all postponed proofs. We start with
proving several properties of

gδ(t) =
1

π

∫ δπ

0

sin(ωt)

ω log(πω )
dω, t ∈ R,

which is illustrated in Fig. 4. In particular, we will show that
gδ , δ ∈ (0, 1), is a bounded bandlimited signal that vanishes
at infinity.

Lemma 1. Let δ ∈ (0, 1). Then we have gδ ∈ B∞δπ,0. Further,
gδ satisfies gδ(0) = 0 and gδ(t) = −gδ(−t) for all t ∈ R.

Proof. Differentiating gδ we obtain

g′δ(t) =
1

π

∫ δπ

0

cos(ωt)

log(πω )
dω

=
1

2π

∫ δπ

−δπ

1

log( π
|ω| )

eiωt dω,

where the interchange of integration and differentiation is
allowed because 1/ log(π/|ω|), and hence

sin(ωt)

ω log(πω )

as well as
cos(ωt)

log(πω )

are continuous functions on [−δπ, δπ] (see Fig. 8). We further
have

1

2π

∫ δπ

−δπ

1

(log( π
|ω| ))

2
dω <∞.

Thus, we see that g′δ ∈ PW
2
δπ . This implies that gδ is a

function of exponential type at most δπ, and consequently
that gδ is bandlimited with bandwidth δπ.

Next, we prove that limt→∞ gδ(t) = 0. Let

ut(ω) =
1

π

∫ ω

0

sin(ω1t)

ω1
dω1 =

1

π

∫ tω

0

sin(ω2)

ω2
dω2.

Using integration by parts, we obtain

πgδ(t) =
1

log( 1
δ )
ut(δπ)−

∫ δπ

0

1

(log(πω ))2
1

ω
ut(ω) dω.

Since ∫ δπ

0

1

(log(πω ))2
1

ω
dω =

1

log( 1
δ )
,

we see that the function

q(ω) =
1

(log(πω ))2
1

ω

satisfies q ∈ L1[0, δπ]. Further, we have |ut(ω)| ≤ C1 for all
t > 0 and ω ∈ [0, δπ]. Application of Lebesgue’s dominated
convergence theorem gives

lim
t→∞

∫ δπ

0

1

(log(πω ))2
1

ω
ut(ω) dω =

∫ δπ

0

1

2(log(πω ))2
1

ω
dω

=
1

2 log(1
δ )
,

because
lim
t→∞

ut(ω) =
π

2

for ω > 0 [46, p. 58, Eq. (8.4)]. Hence, it follows that

lim
t→∞

(
1

log( 1
δ )
ut(δπ)−

∫ δπ

0

1

(log(πω ))2
1

ω
ut(ω) dω

)

=
π

2

(
1

log( 1
δ )
− 1

log( 1
δ )

)
= 0,

which in turn implies that limt→∞ gδ(t) = 0. The properties
gδ(0) = 0, and gδ(t) = −gδ(−t) for all t ∈ R follow directly
from the definition of gδ .

For the proofs of our theorems we need several auxiliary
results that we state next.

We start with two facts about the local behavior of the Shan-
non sampling series for signals in B∞π,0 and B∞π , respectively
[40, Theorem 1].

Fact 2. Let T > 0 be arbitrary. Then, for all f ∈ B∞π,0, we
have

lim
N→∞

max
t∈[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N
f(k)

sin(π(t− k))

π(t− k)

∣∣∣∣∣ = 0.

In particular, Fact 2 shows that every signal f ∈ B∞π,0 is
uniquely determined by its samples f(k), k ∈ Z. If f ∈ B∞π,0
with f(k) = 0 for all k ∈ Z, then it follows that f ≡ 0.

The next fact is a statement about the local behavior of the
Shannon sampling series for signals in B∞π [40, Theorem 1].

Fact 3. For all T > 0 there exists a constant C2(T ) such that,
for all f ∈ B∞π and all N ∈ N, we have

max
t∈[−T,T ]

∣∣∣∣∣
N∑

k=−N
f(k)

sin(π(t− k))

π(t− k)

∣∣∣∣∣ ≤ C2(T )‖f‖B∞
π
.

Second, we need three facts about the properties of
∞∑
k=1

sin(kω)

k
, (8)
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which is the Fourier series of the function

u(ω) =

{
1
2 (π − ω), 0 < ω < 2π,

0, ω = 0 or ω = 2π.

First, the Fourier series (8) converges pointwise to u(ω) for
all 0 ≤ ω ≤ 2π [46, p. 5, Eq. 2.8].

Fact 4. For all 0 ≤ ω ≤ 2π, we have

∞∑
k=1

sin(kω)

k
= u(ω).

Second, on all closed intervals, excluding the jump dis-
continuities, we even have uniform convergence [46, p. 4,
Theorem 2.6].

Fact 5. For all γ > 0, we have

lim
N→∞

max
ω∈[γ,2π−γ]

∣∣∣∣∣u(ω)−
N∑
k=1

sin(kω)

k

∣∣∣∣∣ = 0.

Third, the partial sums of (8) are strictly positive on the
interval (0, π) [46, p. 62, Theorem 9.4].

Fact 6. For all N ≥ 1 and all ω ∈ (0, π), we have

N∑
k=1

sin(kω)

k
> 0.

Now we are in the position to prove Theorem 1.

Proof of Theorem 1. Let δ ∈ (0, 1) be arbitrary but fixed
and let γδ be the signal defined in (6). Then we have
γδ ∈ B∞(1+δ)π,0. We further have

γδ(k) = eikπ gδ(k) = (−1)kgδ(k),

k ∈ Z. Thus, for t ∈ R \ Z, we obtain

(SNγδ)(t) =
N∑

k=−N
(−1)kgδ(k)

sin(π(t− k))

π(t− k)

=
sin(πt)

π

N∑
k=−N

gδ(k)

t− k

=
sin(πt)

π

N∑
k=1

gδ(k)

(
1

t− k
− 1

t+ k

)
,

where we used that sin(π(t− k)) = (−1)k sin(πt). It follows
that

(SNγδ)(t) +
sin(πt)

π

N∑
k=1

2gδ(k)

k

=
sin(πt)

π

N∑
k=1

gδ(k)

(
t

(t− k)k
+

t

(t+ k)k

)
.

For t ∈ [1/4, 3/4], we therefore have∣∣∣∣∣(SNγδ)(t) +
sin(πt)

π

N∑
k=1

2gδ(k)

k

∣∣∣∣∣
≤ 1

π

N∑
k=1

gδ(k)

∣∣∣∣ t

(t− k)k

∣∣∣∣+
1

π

N∑
k=1

gδ(k)

∣∣∣∣ t

(t+ k)k

∣∣∣∣
≤
‖gδ‖B∞

δπ,0

π

(
3

4

N∑
k=1

1

(k − 3
4 )k

+
3

4

N∑
k=1

1

( 1
4 + k)k

)

<
3‖gδ‖B∞

δπ,0

4π

(
4 +

N∑
k=2

1

(k − 3
4 )k

+
N∑
k=1

1

k2

)
.

Since

N∑
k=2

1

(k − 3
4 )k
≤

N∑
k=2

1

(k − 1)2
=
N−1∑
k=1

1

k2
,

we obtain∣∣∣∣∣(SNγδ)(t) +
sin(πt)

π

N∑
k=1

2gδ(k)

k

∣∣∣∣∣
<

3‖gδ‖B∞
δπ,0

4π

(
4 + 2

∞∑
k=1

1

k2

)

=
12 + π2

4π
‖gδ‖B∞

δπ,0
. (9)

It follows that

(SNγδ)(t) ≤ −
2 sin(π4 )

π

N∑
k=1

gδ(k)

k
+

12 + π2

4π
‖gδ‖B∞

δπ,0

(10)

for all t ∈ [1/4, 3/4], where we used the fact that sin(πt) ≥
sin(π/4) for all t ∈ [1/4, 3/4] in the last equality.

Let 0 < γ < δπ be arbitrary. Then, due to Fact 6, we have

N∑
k=1

gδ(k)

k
=

1

π

∫ δπ

0

1

ω log(πω )

N∑
k=1

sin(ωk)

k
dω

≥ 1

π

∫ δπ

γ

1

ω log(πω )

N∑
k=1

sin(ωk)

k
dω.

Since, according to Fact 5, the series

∞∑
k=1

sin(ωk)

k
dω

converges uniformly on [γ, δπ] to (π − ω)/2, we obtain

lim
N→∞

N∑
k=1

gδ(k)

k
≥ 1

π

∫ δπ

γ

1

ω log(πω )

1

2
(π − ω) dω

=
1

2

∫ δπ

γ

1

ω log(πω )
dω − 1

2π

∫ δπ

γ

1

log(πω )
dω

>
1

2

∫ δπ

γ

1

ω log(πω )
dω − δ

2 log(1
δ )
.
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For the integral we have

1

2

∫ δπ

γ

1

ω log(πω )
dω = −1

2

∫ log( 1
δ )

log(πγ )

1

u
du

=
1

2
log

(
log(πγ )

log( 1
δ )

)
,

which gives

lim
N→∞

N∑
k=1

gδ(k)

k
>

1

2
log

(
log(πγ )

log( 1
δ )

)
− δ

2 log(1
δ )

for all γ with 0 < γ < δπ. Taking the limit γ → 0 shows that

lim
N→∞

N∑
k=1

gδ(k)

k
=∞. (11)

Combining (10) and (11), we see that

lim
N→∞

(SNγδ)(t) = −∞ (12)

for all t ∈ [1/4, 3/4].
Assume that there exists a signal fπ ∈ B∞π with fπ(k) =

γδ(k), k ∈ Z. Then, according to Fact 3, we have

max
t∈[−T,T ]

∣∣∣∣∣
N∑

k=−N
γδ(k)

sin(π(t− k))

π(t− k)

∣∣∣∣∣
= max
t∈[−T,T ]

∣∣∣∣∣
N∑

k=−N
fπ(k)

sin(π(t− k))

π(t− k)

∣∣∣∣∣
≤ C2(T )‖f‖B∞

π

for all N ∈ N and T > 0. This is a contradiction (12). Thus,
there exists no signal fπ ∈ B∞π with fπ(k) = γδ(k), k ∈
Z.

Proof of Theorem 2. From the proof of Theorem 1 we already
know that for the signal γδ ∈ B∞(1+δ)π,0, δ ∈ (0, 1), we have

lim
N→∞

(SNγδ)(1/2) = −∞. (13)

Let t1 ∈ R \ Z. We have∣∣∣∣ (SNγδ)( 1
2 )

sin(π2 )
− (SNγδ)(t1)

sin(πt1)

∣∣∣∣ ≤ 1

π

N∑
k=−N

|gδ(k)||t1 − 1
2 |

| 12 − k||t1 − k|

≤
‖gδ‖B∞

δπ,0

π

N∑
k=−N

|t1 − 1
2 |

| 12 − k||t1 − k|

≤ ‖gδ‖B∞
δπ,0

C3(t1),

where C3(t1) is a positive constant that depends on t1 but not
on N . The upper bound C3(t1) for the sum can be obtained
by a calculation that is similar to the calculation that led to
(9). It follows that∣∣∣∣ (SNγδ)(t1)

sin(πt1)

∣∣∣∣ ≥ ∣∣∣∣ (SNγδ)( 1
2 )

sin(π2 )

∣∣∣∣− ‖gδ‖B∞
δπ,0

C3(t1),

which, using (13), implies

lim
N→∞

|(SNγδ)(t1)| =∞. (14)

This proves the first assertion.

Let φ1 be a function in C∞0 [0, 1] with φ1(t) ≥ 0 for all
t ∈ R and

φ1(t) =

{
1, 2

5 ≤ t ≤
3
5 ,

0, t ∈ R \ ( 1
4 ,

3
4 ).

From (10) we know that

(SNγδ)(t) ≤ −
2 sin(π4 )

π

N∑
k=1

gδ(k)

k
+

12 + π2

4π
‖gδ‖B∞

δπ,0

for all t ∈ [1/4, 3/4]. It follows that∫ ∞
−∞

(SNγδ)(t)φ1(t) dt =

∫ 3/4

1/4

(SNγδ)(t)φ1(t) dt

≤ −
∫ 3/4

1/4

2 sin(π4 )

π

N∑
k=1

gδ(k)

k
φ1(t) dt

+

∫ 3/4

1/4

12 + π2

4π
‖gδ‖B∞

δπ,0
φ1(t) dt

≤ −2

5

sin(π4 )

π

N∑
k=1

gδ(k)

k
+

12 + π2

4π
‖gδ‖B∞

δπ,0
‖φ1‖L1(R),

and, using (11), that

lim
N→∞

∫ ∞
−∞

(SNγδ)(t)φ1(t) dt = −∞. (15)

This completes the proof of Theorem 2.

For the proof of Theorem 3 we need several additional
lemmas.

Lemma 2. Let f1, f2 ∈ B∞π,0 with f1(k) = f2(k) for all
k ∈ Z. Then we have f1 ≡ f2.

For a proof of Lemma 2, see, for example, [47, p. 155,
Theorem 1].

A sampling series that is valid for a larger signal space than
the Shannon sampling series is the Valiron sampling series
[7, p. 12], which is sometimes called Tschakaloff’s series [8,
p. 60]. This series provides a valid sampling representation for
signals in B∞π .

Lemma 3. For all f ∈ B∞π , we have

f(t) = f(0)
sin(πt)

πt
+ f ′(0)

sin(πt)

π

+ t
∞∑

k=−∞
k 6=0

f(k)

k

sin(π(t− k))

π(t− k)
, t ∈ R.

For fixed t ∈ R, the series converges absolutely.

We also need the fact that for computable functions f ∈
CB∞π,0 and fixed t ∈ Rc, the third term in the Valiron sampling
series is a computable number.

Lemma 4. Let f ∈ CB∞π,0 and t ∈ Rc. Then we have

t
∞∑

k=−∞
k 6=0

f(k)

k

sin(π(t− k))

π(t− k)
∈ Rc.
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Proof. Let f ∈ CB∞π,0 be arbitrary but fixed. We use the
abbreviations

B(t) = t
∞∑

k=−∞
k 6=0

f(k)

k

sin(π(t− k))

π(t− k)

and

BN (t) = t
N∑

k=−N
k 6=0

f(k)

k

sin(π(t− k))

π(t− k)
.

For t ∈ R and N ∈ N with N > |t|, we have

|B(t)−BN (t)| ≤ |t|
π

∑
|k|>N

∣∣∣∣f(k)

k

sin(π(t− k))

t− k

∣∣∣∣
≤ |t|

π
‖f‖B∞

π,0

∑
|k|>N

1

|k(t− k)|

and∑
|k|>N

1

|k(t− k)|
=

−N−1∑
k=−∞

1

|k(t− k)|
+

∞∑
k=N+1

1

|k(t− k)|

=

∞∑
k=N+1

1

k(t+ k)
+

1

k(k − t)

=
∞∑

k=N+1

2

k2 − t2

≤ 2
∞∑

k=N+1

1

k2
.

Since
∞∑

k=N+1

1

k2
<

∞∑
k=N+1

∫ k

k−1

1

τ2
dτ =

∫ ∞
N

1

τ2
dτ =

1

N
,

it follows that

|B(t)−BN (t)| < 2|t|
πN
‖f‖B∞

π,0
(16)

for all t ∈ R and all N ∈ N with N > |t|. For all t ∈ Rc,
the right-hand side of (16) is a computable number, and thus
we see that the computable sequence {BN (t)}N∈N converges
effectively to B(t). This implies that B(t) ∈ Rc for all t ∈
Rc.

Lemma 5. For all t ∈ R, we have
∞∑

k=−∞

(
sin(π(t− k))

π(t− k)

)2

= 1.

Proof. Let t ∈ R be arbitrary but fixed. According to Parse-
val’s theorem we have

∞∑
k=−∞

(
sin(π(t− k))

π(t− k)

)2

=

∫ ∞
−∞

(
sin(π(t− τ))

π(t− τ)

)2

dτ

=
1

2π

∫ π

−π
|eiωt|2 dω = 1,

which completes the proof.

Lemma 6. Let A ⊂ N be a recursively enumerable nonre-
cursive set, and φA : N → N a recursive enumeration of the
elements of A, where φA is a one-to-one function, i.e., for
every element k ∈ A there exists exactly one Nk ∈ N with
φA(Nk) = k. Then the number

∞∑
N=1

1

2φA(N)

is not computable.

We will prove Lemma 6 in Section X.
Now we are in the position to prove Theorem 3.

Proof of Theorem 3. In this proof we will construct a signal f
that is computable in B∞2π,0. It is easy to see that the sequence
of samples {f(k)}k∈Z is computable in c0. Since f ∈ CB∞2π,0,
we know from Fact 1 and the fact that f is computable, that
for every approximation error 1/2M , f can be approximated
effectively in the B∞2π,0-norm by a finite series

N(M)∑
k=−N(M)

ck(M)
sin(π(t− k))

π(t− k)
,

such that the approximation error is less than 1/2M . This
implies that the sequence of samples {f(k)}k∈Z can be effec-
tively approximated in the c0-norm with a discrete-time signal
that has only finitely many non-zero values. Although the
samples {f(k)}k∈Z are computable, we will see later that their
oscillation is too strong so that the bandlimited interpolation
fπ(t) in B∞π,0 is not computable for any t ∈ Rc \ Z.

Let N ∈ N be arbitrary but fixed, and let

pN (t) = −
N∑
k=1

(−1)k
(

sin(π(t− k))

π(t− k)

)2

, t ∈ R.

As a finite sum of computable functions, pN is computable in
B∞2π,0. Hence, we see that pN ∈ CB∞2π,0. Further, we have

|pN (t)| ≤
N∑
k=1

(
sin(π(t− k))

π(t− k)

)2

≤ 1, (17)

where we used Lemma 5 in the second inequality. Since
|pN (k)| = 1 for all 1 ≤ k ≤ N , it follows that

‖pN‖B∞
2π,0

= 1.

Let

pN,π(t) =

N∑
k=1

pN (k)
sin(π(t− k))

π(t− k)

= − sin(πt)

π

N∑
k=1

1

t− k
. (18)

Then, we have

pN,π

(
1

2

)
=

1

π

N∑
k=1

1

k − 1
2

.

Since
1

k − 1
2

>

∫ k+1

k

1

τ − 1
2

dτ, k ≥ 1,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSP.2019.2954972

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

it follows that

pN,π

(
1

2

)
=

1

π

∫ N+1

1

1

τ − 1
2

dτ

>
1

π
log(2N + 1). (19)

Further, for t ∈ R \ Z, we have

|pN,π(t)| ≤
N∑
k=1

∣∣∣∣ sin(π(t− k))

π(t− k)

∣∣∣∣
< 2 +

1

π

k1(t)∑
k=1

1

t− k
+

1

π

N∑
k=k2(t)

1

k − t

< 2 +
1

π

k1(t)∑
k=1

1

k1(t) + 1− k
+

1

π

N∑
k=k2(t)

1

k − k2(t) + 1

= 2 +
1

π

k1(t)∑
k=1

1

k
+

1

π

N−k2(t)+1∑
k=1

1

k

≤ 2 +
2

π

N∑
k=1

1

k

< 2 +
2

π
+

2

π
log(N), (20)

where k1(t) is the largest natural number that is smaller than
or equal to N and satisfies k1(t) + 1 < t. Further, k2(t) is the
smallest natural number such that k2(t)−1 > t. If k2(t) > N
then the above sums involving k2(t) are the empty sums. We
also used the inequality

N∑
k=1

1

k
< 1 +

N∑
k=2

∫ k

k−1

1

τ
dτ

= 1 +

∫ N

1

1

τ
dτ

= 1 + log(N)

in the last line. This shows that

‖pN,π‖B∞
π,0
≤ 2 +

2

π
+

2

π
log(N).

Further, we see from (18) that

p(N+1),π

(
1

2

)
> pN,π

(
1

2

)
. (21)

Let
gN (t) =

1

pN,π( 1
2 )
pN (t), t ∈ R.

Then we have

‖gN‖B∞
2π,0

=
1

|pN,π( 1
2 )|
‖pN‖B∞

2π,0

<
π

log(2N + 1)
,

where we used (17) and (19) in the last inequality.
Let A ⊂ N be an arbitrary recursively enumerable nonre-

cursive set, and let φA : N → N be an enumeration of the
elements of A, where φA is a one-to-one function, i.e., for

every element k ∈ A there exists exactly one Nk ∈ N with
φA(Nk) = k. We consider the function

f(t) =
∞∑
N=1

1

2φA(N)
gN (t), t ∈ R. (22)

Since
∞∑
N=1

∥∥∥∥ 1

2φA(N)
gN

∥∥∥∥
B∞

2π,0

≤
∞∑
N=1

1

2φA(N)
‖gN‖B∞

2π,0

<
∞∑
N=1

1

2N
π

log(2N + 1)

< π,

it follows that the series in (22) is absolutely convergent and
that f ∈ B∞2π,0. For M ∈ N, we have∥∥∥∥∥f −

M∑
N=1

1

2φA(N)
gN

∥∥∥∥∥
B∞

2π,0

≤
∞∑

N=M+1

1

2φA(N)
‖gN‖B∞

2π,0

<
1

p(M+1),π

(
1
2

) ∞∑
N=M+1

1

2N

≤ 1

p(M+1),π

(
1
2

)
≤ π

log(2M + 3)
,

where we used (21) in the second inequality and (19) in the
last inequality. This shows that the computable sequence{

M∑
N=1

1

2φA(N)
gN

}∞
M=1

converges effectively to f . Hence, f is computable in B∞2π,0.
Let

gN,π(t) =
1

pN,π
(
1
2

)pN,π(t), t ∈ R,

and

q∗(t) =
∞∑
N=1

1

2φA(N)
gN,π(t), t ∈ R. (23)

For N ∈ N we have

‖gN,π‖B∞
π,0

=
1

pN,π
(
1
2

)‖pN,π‖B∞
π,0

<
π

log(2N + 1)

(
2 +

2

π
+

2

π
log(N)

)
≤ 2(1 + π)

log(3)
,

and it follows that

‖q∗‖B∞
π,0
≤
∞∑
N=1

1

2φA(N)
‖gN,π‖B∞

π,0
<

2(1 + π)

log(3)
.

Hence, we see that the series in (23) converges absolutely.
Further, according to Lemma 2, we have fπ = q∗, because
f(k) = q∗(k) for all k ∈ Z, and fπ as well as q∗ are in B∞π,0.
Since, according to Lemma 6

∞∑
N=1

1

2φA(N)
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is not computable, it follows that

fπ

(
1

2

)
= q∗

(
1

2

)
=
∞∑
N=1

1

2φA(N)
gN,π

(
1

2

)
=
∞∑
N=1

1

2φA(N)

is not computable, i.e., we have fπ(1/2) 6∈ Rc.
Using Lemma 3 we see that

fπ(t) = fπ(0)
sin(πt)

πt︸ ︷︷ ︸
=:B1(t)

+f ′π(0)
sin(πt)

π

+ t
∞∑

k=−∞
k 6=0

fπ(k)

k

sin(π(t− k))

π(t− k)︸ ︷︷ ︸
=:B2(t)

, t ∈ R. (24)

We analyze the three summands on the right-hand side of (24).
We have B1(t) ∈ Rc for all t ∈ Rc, because fπ(0) = f(0) ∈
Rc. Further, we have B2(t) ∈ Rc for all t ∈ Rc, due to
Lemma 4. For t = 1/2 we know that fπ(1/2) 6∈ Rc. Thus,
the left-hand side and, consequently, the right-hand side of (24)
are not computable for t = 1/2. It follows that f ′π(0) 6∈ Rc.
This implies that

f ′π(0)
sin(πt)

π
,

and, consequently, fπ(t) is not computable for all t ∈ Rc \
Z.

IX. SIZE OF THE SET OF PROBLEMATIC SIGNALS

It would be interesting to know if the problematic behavior
that was observed in Theorems 1 and 2 only exists for very
few signals or if it is the prevailing behavior that occurs for
almost all signals. The next theorem gives an answer in terms
of Baire categories.

We review some of the definitions. A subsetM of a Banach
space X is said to be nowhere dense in X if the interior of the
closure of M is empty. M is said to be of first category (or
meager) if M is the countable union of sets, each of which
is nowhere dense in X . M is said to be of second category
(or nonmeager) if is not of first category. The complement of
a set of first category is called a residual set. Topologically,
sets of first category may be considered “small”. Accordingly,
residual sets, being the complements of sets of first category,
can be considered “large”. In a complete metric space, any
residual set is dense and a set of second category, due to
Baire’s theorem [48].

Theorem 4. Let δ ∈ (0, 1). The set of all signals f ∈
B∞(1+δ)π,0, for which there exists no fπ ∈ B∞π with fπ(k) =
f(k) for all k ∈ Z, is a residual set in B∞(1+δ)π,0.

Theorem 5. Let δ ∈ (0, 1). The set of all signals f ∈
B∞(1+δ)π,0, for which we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N
f(k)

sin(π(t− k))

π(t− k)

∣∣∣∣∣ =∞

for all t ∈ R \ Z, is a residual set in B∞(1+δ)π,0. Further,
the set of all signals f ∈ B∞(1+δ)π,0, for which there exists a
φ ∈ C∞0 [0, 1] such that

lim sup
N→∞

∣∣∣∣∣
∫ ∞
−∞

N∑
k=−N

f(k)
sin(π(t− k))

π(t− k)
φ(t) dt

∣∣∣∣∣ =∞,

is a residual set in B∞(1+δ)π,0.

This shows that “almost all” signals in B∞(1+δ)π,0 exhibit the
problematic behavior with respect to downsampling.

The previous two theorems were formulated with regard to
the bandpass signals f ∈ B∞(1+δ)π,0. It is also possible to make
a statement about the set of lowpass signals g ∈ B∞δπ,0 for
which the downsampled sequence {f(k)}k∈Z, obtained from
the continuous-time signal

f(t) = eiπt g(t), t ∈ R,

has no bounded bandlimited interpolation.

Theorem 6. Let δ ∈ (0, 1). The set of all signals g ∈ B∞δπ,0,
for which we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N
f(k)

sin(π(t− k))

π(t− k)

∣∣∣∣∣ =∞

for all t ∈ R \Z, is a residual set in B∞δπ,0. Further, the set of
all signals g ∈ B∞δπ,0, for which there exists a φ ∈ C∞0 [0, 1]
such that

lim sup
N→∞

∣∣∣∣∣
∫ ∞
−∞

N∑
k=−N

f(k)
sin(π(t− k))

π(t− k)
φ(t) dt

∣∣∣∣∣ =∞,

is a residual set in B∞δπ,0. In both statements above, f(t) =
eiπt g(t), t ∈ R.

Proof of Theorem 4. A look at the proof of Theorem 1 reveals
that it is sufficient to prove that there exists a t ∈ R \ Z
such that the set of signals f ∈ B∞(1+δ)π,0, for which we have
lim supN→∞|(SNf)(t)| =∞, is a residual set. Having shown
this, the rest of the proof is done analogously to the proof of
Theorem 1.

Next, we prove the above statement. Let t ∈ R \ Z be
arbitrary but fixed. For N ∈ N, let

ψNf = (SNf)(t) =
N∑

k=−N
f(k)

sin(π(t− k))

π(t− k)
.

For each N ∈ N, ψN : B∞(1+δ)π,0 → C is a continuous linear
functional. Since

‖ψN‖ = sup
f∈B∞

(1+δ)π,0

‖f‖B∞
(1+δ)π,0

≤1

|ψNf | ≥ |ψNγ1/2| = |(SNγ1/2)(t)|,

it follows from (14) that limN→∞‖ψN‖ = ∞. Hence, the
Banach–Steinhaus theorem [49, p. 98] implies that the set of
signals f ∈ B∞(1+δ)π,0 with

lim sup
N→∞

|ψNf | = lim sup
N→∞

|(SNf)(t)| =∞

is a residual set.
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Proof of Theorem 5. Let φ1 ∈ C∞0 [0, 1] be the function from
Theorem 2, and let t ∈ R \ Z be arbitrary but fixed. Further,
for N ∈ N, let

ΓNf =

∫ ∞
−∞

(
N∑

k=−N
f(k)

sin(π(t− k))

π(t− k)

)
φ1(t) dt.

For each N ∈ N, ΓN : B∞(1+δ)π,0 → C is a continuous linear
functional. Let γδ , δ ∈ (0, 1), be the function from Theorem 1.
Since limN→∞|ΓNγδ| = ∞, according to (15), it follows
from the Banach–Steinhaus theorem [49, p. 98] that the set
of signals f ∈ B∞(1+δ)π,0 for which

lim sup
N→∞

|ΓNf | = lim sup
N→∞

∣∣∣∣∫ ∞
−∞

(SNf)(t)φ1(t) dt

∣∣∣∣ =∞

is a residual set.

Proof of Theorem 6. Let t ∈ R \Z be arbitrary but fixed. For
N ∈ N, let

ψ̃Ng = sin(πt)

N∑
k=−N

g(k)

π(t− k)
.

For each N ∈ N, ψ̃N : B∞δπ,0 → C is a continuous linear
functional. Since

(SNf)(t) =

N∑
k=−N

f(k)
sin(π(t− k))

π(t− k)

=
∞∑

k=−∞
(−1)kg(k)

sin(π(t− k))

π(t− k)

= sin(πt)
N∑

k=−N

g(k)

π(t− k)

= ψ̃Ng,

we see that

‖ψ̃N‖ = sup
g∈B∞

δπ,0

‖g‖B∞
δπ,0
≤1

|ψ̃Ng| ≥ |ψ̃Ng1/2| = |(SNγ1/2)(t)|,

and it follows from (14) that limN→∞‖ψ̃N‖ = ∞. The
Banach–Steinhaus theorem [49, p. 98] shows that the set of
signals g ∈ B∞δπ,0 for which lim supN→∞|ψ̃Ng| = ∞ is a
residual set.

X. CONSTRUCTION OF A NON-COMPUTABLE NUMBER

In this section we prove Lemma 6 and give an interpretation
of the approximation of a non-computable number in terms of
computable Cauchy sequences. A proof of Lemma 6 is given
in [34, p. 17] using basic facts about computable sequences.
The proof that we will give in the following is different from
the proof in [34, p. 17]. It is based on dyadic expansions and
illustrates the essential properties of non-computable numbers.

A rational number x ∈ (0, 1) is called dyadic rational if
we have x = m/2N for some m,N ∈ N. Without loss of
generality we can assume that m and 2N are coprime. Clearly,
we always have m < 2N , and m has the representation

m =
L∑
l=0

al(m)2l,

where al(m) ∈ {0, 1}, 0 ≤ l ≤ L, and L < N is the smallest
natural number such that al(m) = 0 for all l > L. For dyadic
rational numbers we have the representation

x =
∞∑
n=1

an(x)
1

2n

with an(x) = 0 for n > N . For every number x ∈ (0, 1) that
is not dyadic rational, we have the unique representation

x =
∞∑
n=1

an(x)
1

2n
.

Let A ⊂ N be a recursively enumerable nonrecursive set, and
let φA : N→ N be an enumeration of the elements of A, where
φA is a one-to-one function, i.e., for every element k ∈ A there
exists exactly one Nk ∈ N with φA(Nk) = k. Further, let

xA =
∞∑
n=1

1

2φA(n)
.

For xA, which is not dyadic rational, we have

an(xA) =

{
1, n ∈ A,
0, n ∈ N \A.

Proof of Lemma 6. We assume that

xA =

∞∑
n=1

1

2φA(n)
∈ Rc

and construct a contradiction. Since xA is computable, there
exist a computable sequence {xn}n∈N of rational numbers and
a recursive function φ : N → N such that |xA − xn| ≤ 1/2N

for all n ≥ φ(N). We have ak(xA) = ak(xn) for all 1 ≤
k ≤ N−1. This follows from |2N−1xA−2N−1xn| ≤ 1/2 for
all n ≥ φ(N), which shows that the integer parts of 2N−1xA
and 2N−1xn need to be equal. Let n = φ(N). Since xφ(N) is
a computable rational number, it follows that the coefficients
ak(xφ(N)), 1 ≤ k ≤ N − 1 are computable. This implies for
1 ≤ k ≤ N − 1 and all N ∈ N that k ∈ A if ak(xφ(N)) = 1
and k ∈ N \A if ak(xφ(N)) = 0. Hence, A is a recursive set,
which is a contradiction to our assumption.

Let {xn}n∈N be an arbitrary computable sequence of com-
putable numbers with limn→∞ xn = xA. A computable
sequence of computable numbers {xn}n∈N is called a com-
putable Cauchy sequence if there exists a computable function
φ such that for all N ∈ N we have

|xM1
− xM2

| < 1

2N
(25)

for all M1,M2 ≥ φ(N). Since xA is not computable, {xn}n∈N
cannot be a computable Cauchy sequence. We even have for
every computable function φ: Every recursively enumerable
infinite set I ⊂ N contains an infinite subset I ⊂ I such that
for all N ∈ I there exist two numbers, M1(N),M2(N) ∈ N
with M1(N) ≥ φ(N) and M2(N) ≥ φ(N), such that

|xM1(N) − xM2(N)| ≥
1

2N
.

That is, for every recursively enumerable set I ⊂ N, the
condition (25) is violated infinitely often. As a consequence,
if we implement any computable stopping algorithm, the
stopping time condition (25) is violated infinitely often.
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XI. CONCLUSION

In classical signal processing books, the theoretical treat-
ment of the two operations, downsampling and bandlimited
interpolation, is not given special attention, despite their high
importance in applications. There are no studies of the analyt-
ical properties of downsampling for bandlimited signals that
vanish at infinity. The usual narrative is that the bandlimited
interpolation always exists [25, p. 52 and p. 162] and [26,
p. 144]. That this cannot be true for arbitrary signals has been
demonstrated in [41], where a sequence in c0 was constructed
that possesses no bounded bandlimited interpolation.

In the present paper we went much further and studied the
existence of the bandlimited interpolation for sequences that
are created by downsampling a discrete-time signal that has
been generated by sampling bandlimited signals. By proving
that this bandlimited interpolation does not exist in general, we
have shown that downsampling needs to be treated carefully
when considering more general signal spaces than PW2

σ , the
space of bandlimited signals with finite energy. Further, we
analyzed the algorithmic computability of the bandlimited
interpolation and proved that even when the bandlimited inter-
polation exists mathematically, it cannot always be computed
on a digital computer, because the approximation error cannot
be controlled.

To the best of our knowledge, there have been no rigorous
studies of this problem so far, and our result is the first in this
direction.

APPENDIX

Proof of Fact 1. Let f ∈ B∞π,0 be arbitrary. For δ > 0, we
consider the function

gδ(t) = f((1− δ)t) sin(δπt)

δπt
.

We have gδ ∈ PW2
π . Further, we have

|f(t)− gδ(t)|

=

∣∣∣∣∣f(t)− f(t)
sin(δπt)

δπt
+ f(t)

sin(δπt)

δπt

− f((1− δ)t) sin(δπt)

δπt

∣∣∣∣∣
≤ |f(t)|

∣∣∣∣1− sin(δπt)

δπt

∣∣∣∣+ |f(t)− f((1− δ)t)|
∣∣∣∣ sin(δπt)

δπt

∣∣∣∣
≤ |f(t)|

∣∣∣∣1− sin(δπt)

δπt

∣∣∣∣+ |f(t)− f((1− δ)t)|. (26)

Let ε > 0 be arbitrary but fixed. According to the Riemann–
Lebesgue lemma, there exists a T1 = T1(ε) such that

|f(t)| < ε

8
(27)

for all |t| ≥ T1. It follows that

|f(t)|
∣∣∣∣1− sin(δπt)

δπt

∣∣∣∣ ≤ 2|f(t)| < ε

4

for all |t| ≥ T1. Further, there exists a δ0 = δ0(ε) such that

max
|t|≤T1

∣∣∣∣1− sin(δπt)

δπt

∣∣∣∣ < ε

4‖f‖B∞
π,0

for all 0 < δ ≤ δ0. Hence, it follows that

|f(t)|
∣∣∣∣1− sin(δπt)

δπt

∣∣∣∣ < ε

4
(28)

for all t ∈ R and all 0 < δ ≤ δ0. For |t| ≥ 2T1 and 0 < δ ≤
1/2 we have

|f(t)− f((1− δ)t)| ≤ |f(t)|+ |f((1− δ)t)|

<
ε

8
+
ε

8

=
ε

4
,

where we used (27) in the last inequality. Further, for |t| ≤ 2T1
we have

|f(t)− f((1− δ)t)| ≤ ‖f ′‖B∞
π,0
|1− (1− δ)t|

= ‖f ′‖B∞
π,0
δ|t|

≤ ‖f ′‖B∞
π,0
δ2T1.

Let δ1 = δ1(ε) = ε/(8T1‖f ′‖B∞
π,0

). Then we have

|f(t)− f((1− δ)t)| < ε

4

for |t| ≤ 2T1 and all 0 < δ < δ1. It follows that

|f(t)− f((1− δ)t)| < ε

4
(29)

for all t ∈ R and all 0 < δ < min{1/2, δ1}. From (26), (28),
and (29), we see that

|f(t)− gδ(t)| <
ε

2
(30)

for all t ∈ R and all 0 < δ < min{1/2, δ0, δ1}.
Let δ̂ ∈ (0,min{1/2, δ0, δ1}) be arbitrary but fixed. Since

gδ̂ ∈ PW
2
π , there exists an N ∈ N such that∥∥∥∥∥gδ̂ −

N∑
k=−N

gδ̂(k)
sin(π( · − k))

π( · − k)

∥∥∥∥∥
PW2

π

<
ε

2
. (31)

Using the abbreviation

(SNgδ̂)(t) =
N∑

k=−N
gδ̂(k)

sin(π(t− k))

π(t− k)
,

we can conclude from (31) that

‖gδ̂ − SNgδ̂‖B∞
π,0
≤ ‖gδ̂ − SNgδ̂‖PW2

π
<
ε

2
. (32)

It follows that

‖f − SNgδ̂‖B∞
π,0
≤ ‖f − gδ̂ + gδ̂ − SNgδ̂‖B∞

π,0

≤ ‖f − gδ̂‖B∞
π,0

+ ‖gδ̂ − SNgδ̂‖B∞
π,0

<
ε

2
+
ε

2
= ε,

where we used (30) and (32) in the last inequality.
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